If it's not what You are looking for type in the equation solver your own equation and let us solve it.
64t^2-36=0
a = 64; b = 0; c = -36;
Δ = b2-4ac
Δ = 02-4·64·(-36)
Δ = 9216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9216}=96$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-96}{2*64}=\frac{-96}{128} =-3/4 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+96}{2*64}=\frac{96}{128} =3/4 $
| -13=c+-2 | | y/9+78=88 | | 9+3y=4y+6y-5 | | 22=h-102 | | 6(9x+5)=1925.7(-9-8x) | | -9-2j=17 | | b/23=20 | | d/3+18=27 | | 9b= 44 | | 63=9k;{5,6,7,8} | | 61=u-846 | | 2x+35=3(x+5) | | 12n+3-3n=30 | | 18x-72+90=180 | | 6x+3x=-9x-54 | | −80=−30x-5x^2 | | 6x=16=x+29 | | j+-519=395 | | 7(-5x-4)=15 | | x+14+7=90 | | -6c=270 | | 6(x+3)+3x=3(x−2) | | -40-30=-2r-8r | | 12x/5-7x/5+4=-21 | | s2=9 | | -5/2m+25=-25 | | x2=−18−9x | | 4n+10=-30 | | -8=x+1-6 | | 4x-9x+15=-2x+3 | | .–7b–3=–3b+5 | | n/22=13 |